TM SCREW

 (1 b 0^{4} 일본 TOYO사 미끄럼나사1. TM 나사의 종류 158
2. TM 나사의 특징 159
3. TM 나사의 선정
3.1) PV치 160
3.2) 안전계수 160
3.3) 나사효율과 발생 추력 161
4. 윤활 161
5. 형번 구성 162
6. 사양표
TMR 163
TML 164
TMSR 165
TTM 166
FTM 166
ATM 167
BTM 168
STM 169
TTM대형 170
TMC 171
CTM 172
TMH 173
TTMH 174
SMR 175
ASM 176
TSM 176
SSM 176

TM 나사의 종류

1. TM 나사의 종류

축구분	정도등급	특징	페이지	$\begin{aligned} & \text { 적용 } \\ & \text { 너트 } \end{aligned}$	특징	페이지
TMR	표준(C8)	- 재질 : SM20C ■ 전조성형후 외경연마 ■ 한줄나사 고 우나사, 좌나사 표준재	P. 163	TTM	둥근 플랜지 너트	P. 166
				STM	원통형 너트	P. 169
				ATM	양쪽 컷팅 플랜지 너트	P. 167
				FTM	사각 플랜지 너트	P. 166
				BTM	각형 너트	P. 168
TML	표준(C8)	- 재질 : SM45C - 마하절삭으로 생산 - $\phi 45, \phi 50$ 재고품	P. 164	TTM	둥근 플랜지 너트	$\begin{aligned} & \text { P. } 166 \\ & \text { P. } 170 \end{aligned}$
				ATM	양쪽 컷팅 플랜지 너트	P. 167
				FTM	사각 플랜지 너트	P. 166
TMH	표준(C8)	재질 : SM20C 다줄나사로 고속 이송 용 다양한 리드	P. 173	TTMH	둥근 플랜지 다줄 너트	P. 174
SMR		재질 : SM45C소형삼각전동용나사$\phi 5 \sim \phi 8$다양한 리드	P. 175	TSM	소형플랜지너트	P. 176
				ASM	소형플랜지컷팅너트	P. 176
				SSM	소형원통형너트	P. 176
TMC	표준(C8)	재질 : SM45C 좌우나사- 중간비나사 부 양쪽으로 오른, 왼나사 申8~申32	P. 171	CTM	장홀 플랜지너트	P. 172
				TTM	둥근 플랜지 너트	P. 166
				STM	원통형 너트	P. 169
				ATM	양쪽 컷팅 플랜지 너트	P. 167
				FTM	사각 플랜지 너트	P. 166
				BTM	각형 너트	P. 167
TMSR	표준(C8)	■ 재질 : SUS303 ■ 내식성, 내부식성 	P. 165	TTM	둥근 플랜지 너트	P. 166
				STM	원통형 너트	P. 169
				ATM	양쪽 컷팅 플랜지 너트	P. 167
				FTM	사각 플랜지 너트	P. 166
				BTM	각형 너트	P. 168

TM 나사의 특징

2. 일본 TOYO사 TM Screw의 특징

동력전달용 나사를 대표하는 TM나사(KS, JIS규격 : Tr)는 주로 회전운동을 직선운동을 바꿔 부품의 위치를 이동시키는 목적으로 사용됩니다. 전동 미끄럼 나사의 나사산 모양은 여러가 지가 있으나 일본 TOYO사는 30° 사다리꼴나사를 표준으로 하며 소형 나사의 경우 60° 삼각 나사형태의 전동나사도 생산합니다.
일본 TOYO SHAFT사는 TM Screw 전문 메이커로 오랜 기간의 노하우와 정밀 설비를 갖추어 일본 내에서도 최고 품질의 제품을 생산하고 있습니다.
2.1) 30° 사다리꼴 나사

동력전달에 적합한 30° 사다리꼴 나사 형태로 제작되어 동력 전달시 손실을 최소화 합니다. (JIS B0216에 따라 생산)

Pitch								a	b	c	h2	h1
2	0.25	0.5	0.5	0.75	1.25							
3	0.25	0.5	0.75	1.25	1.75							
4	0.25	0.5	1	1.75	2.25							
5	0.25	0.75	1.25	2	2.75							
6	0.25	0.75	1.5	2.5	3.25							
8	0.25	0.75	2	3.5	4.25							
10	0.25	0.75	2.5	4.5	5.25							
12	0.25	0.75	3	5.5	6.25							

2.2) 정밀성

일본 TOYO Shaft사는 일본의 기술력과 노하우를 바탕으로 정밀 TM Screw를 생산하고 있습 니다. 리드정밀도는 C 8 급 정밀도 $(\pm 0.1 / 300 \mathrm{~mm}$)를 기본으로 생산하고 있습니다(SMR 제외).
TMR, TMH, TMSR의 경우 전조 성형 후 축 외경을 센터레스 연삭하기 때문에 축의 휨량이 매 우 적고 양단 가공시 중심내기 작업이 용이합니다. 전조가공시에도 가공 응력이 제거 되어 있 으므로 양단을 추가 가공하여도 가공 응력에 의한 변형이 거의 없습니다.
2.3) 다양성, 호환성

다양한 축경 ($\phi 5 \sim \phi 50$), 다양한 리드 $(2 \mathrm{~mm} \sim 40 \mathrm{~mm}$)를 가진 제품을 표준재고로 확보하여 선택 의 폭이 넓습니다. 또한 오른나사외에 왼나사 표준축과 너트, 좌우나사 등 다양한 제품을 보유 하고 있습니다.
모든 제품은 엄격한 기준으로 정밀하게 치수 관리를 하고 있어 축과 너트의 호환성이 높습니 다.
2.4) 빠른 납기

다양한 제품을 수입하여 대량으로 재고를 보유하고 있습니다. 단말가공이 없는 경우 당일 발 송이 가능합니다.
2.5) 자동 조심
30° 도 사다리꼴 나사는 축과 너트의 15° 미끄럼 분력에 의해 축의 중심으로 자동 조심이 되 므로 너트의 나사면에 편하중이 걸리지 않아 이상마모 현상없이 고르게 접촉합니다.
2.6) 셀프락 (Self Lock)

한줄나사를 수직으로 사용하는 경우 나사의 리드각에 의한 회전분력보다 미끄럼 마찰력이 더 크므로 하중에 의해 너트가 흘러내리는 현상이 없습니다.
다줄나사의 경우 리드각이 크므로 너트가 흘러내릴 수 있습니다.

3. 나사축의 선정

3.1) PV치

TM Screw 너트는 접촉면압 (Pm) 과 미끄럼 속도 (V) 의 곱인 PV 치로 사용 가능 여부를 파악할 수 있습니다.
$\mathrm{PV}=\mathrm{Pm} \times \mathrm{V}=$ 접촉면압 \times 미끄럼 속도
3.1.1) 접촉면압

$$
\begin{array}{ll}
\mathrm{Pm}=\frac{\mathrm{P}}{\mathrm{~F} 0} & \begin{array}{l}
\mathrm{Pm}: \text { 나사미끄럼면의 접촉면압 }\left(\mathrm{kgf} / \mathrm{mm}^{2}\right) \\
\mathrm{P}: \text { 축방향 하중 }(\mathrm{kgf}) \\
\mathrm{Fo}: \text { 동적허용추력 }(\mathrm{kgf})
\end{array}
\end{array}
$$

3.1.2) 미끄럼 속도

$$
\mathrm{V}=\frac{\pi \cdot \mathrm{d} 2 \cdot 10^{-3} \cdot \mathrm{n}}{\cos \theta}
$$

$$
\mathrm{V} \text { : 미끄럼 속도 (m/min) }
$$

$$
\mathrm{d}_{2} \text { : 나사축의 유효경 (mm) }
$$

$$
\mathrm{n} \text { : 나사축의 매분 회전수 (rpm) }
$$

$$
\theta \text { : 나사축의 리드각 }\left({ }^{\circ}\right)
$$

PV에 의한 하중과 속도의 관계는 표를 이용하면 쉽게 구할 수 있습 니다.
오른쪽 그래프는 이상마모가 일어 나지 않는 최대 PV치를 나타냅니 다.
$\mathrm{BC6}$ 재질은 PV치가 2.5 이하, 엔지 니어링 플라스틱인 아세탈은 3.6 이하일 경우 이상 마모 현상이 발 생하지 않습니다. 하지만 통상의 경우 BC6은 1.2 이하, 아세탈의 경 우 1.8 이하로 사용토록 권장하고 있습니다.
※ 윤활조건에 따라 PV치는 달라 질 수 있습니다.

3.2) 안전계수 fs

PV치와는 별개로 주위 조건에 의한 안정성을 고려하여야 합니다. 사용중에 정지시 관성에 의한 하중이나 충격하중등의 예상치 못한 하중이 발생 할 수 있습니다. 따라서 하중이 안전계수에 적합 한지 확인하여야 합니다.

$$
\mathrm{fs} \leqq \begin{array}{ll}
\mathrm{FO} & \begin{array}{l}
\mathrm{fs}: \text { 정적안전계수 } \\
\mathrm{Fo}: \text { 동적허요ㅇㅜㅜ력 (kgf) } \\
\mathrm{P}: \text { : 축방향하중 }(\mathrm{kgf})
\end{array}
\end{array}
$$

사용조건	fs
사용빈도가 적고 정적인 하중	$1 \sim 2$
일반적인 한쪽방향의 하중	$2 \sim 3$
충격진동을 동반하는 하중	4 이상

TM 나사 선정, 윤활

3.3) 나사효율과 발생 추력

나사축에 토오크를 걸어서 발생하는 추력은 다음의 식으로 구할 수 있습니다.
3.3.1) 나사효율

$$
\eta=\frac{1-\mu \cdot \tan \theta}{1+\mu / \tan \theta} \quad \begin{array}{ll}
\eta: \text { 나사효율 } \\
& \theta: \text { 리드각 }\left({ }^{\circ}\right) \\
\mu: \text { 마찰계수(약 0.1~0.2) }
\end{array}
$$

3.3.2) 발생추력

$$
\mathrm{F}_{1}=\frac{2 \cdot \pi \cdot \eta \cdot \mathrm{~T}}{\ell \cdot 10^{-3}} \quad \begin{aligned}
& \mathrm{F}_{1}: \text { 발생추력 }(\mathrm{kgf}) \\
& \mathrm{\eta}: \text { 나사효율 } \\
& \\
& \\
& \\
& \\
& \\
& \ell: \text { 입력 토으 }(\mathrm{mm})
\end{aligned}
$$

그림1) 효율 그래프

계산예) TMR20, TTM20 을 조합했을 때 나사 효율은

■ TMR20 리드각 : 4.05°
回 $\mu=0.2$
(1) $\frac{1-0.2 \cdot \tan 4.05^{\circ}}{1+0.2 / \tan 4.05^{\circ}}=0.26$
(2) 왼쪽 그래프에서도 답을 찾을 수 있습니다. 리드각 4.05° 일때 $\eta=0.26$

4. 윤활

너트의 사용 조건에 따라 윤활 방법을 선정해야 합니다.
공급시 너트에 급유가 되어 있지 않기 때문에 사용 전에 그리스나 윤활유를 충분히 공급해 주시기 바랍니다.

사용조건	윤활제의 종류
저속 고하중	리듐 비누기 그리스 2~3호

한줄나사 축 형번 구성

TMR 16 L * 600 DRD

TOYO리드스크류
특성 구분 (표1참고)
축경 ($\phi 8 \sim \phi 50$)
나사방향 : R or 무기호(오른나사)
L (왼나사)
표1)

특성구분

R: 전조나사
L: 절삭나사
C: 좌우나사
SR: SUS 나사

다줄나사 축 형번 구성

TMH1624 * 600 DRD

TOYO리드스크류
다줄나사
축경 ($\phi 8 \sim \phi 25$)
리드 (mm)
※ 너트와 축을 따로 표기 합니다.
(1) TMR16*500D
(2) TTM16

축 후처리 : 무기호, RD (레이던트 후처리) 가공유무 : L: 소재만, D : 가공포함 전체 길이 (mm)

축 후처리:
무기호, RD (레이던트 후처리) 가공유무 - L: 소재만, D : 가공포함 전체 길이 (mm)
※ 너트와 축을 따로 표기 합니다.
(1) TMH1624*500D
(2) TTMH1624

삼각나사 축 형번 구성

SMR 5008 * 200 DRD

TOYO삼각나사
전조나사
축경 ($\phi 5 \sim \phi 8$)
리드 $(0.8,2,10 \mathrm{~mm})$
※ SMR5008은 리드가 0.8 mm

축 후처리:
무기호, RD (레이던트 후처리)
가공유무 - L: 소재만, D: 가공포함 전체 길이 (mm)
※ 너트와 축을 따로 표기 합니다.
(1) SMR5020*200D
(2) ASM5020

각각의 나사와 대응되는 너트를 따로 표기하여 주시기 바랍니다.
ATMR20*2000 -이런 식으로 표기할 경우 납품에 오류가 있을 수 있습니다.
축과 너트는 조립하지 않은 상태로 출하됩니다.

사양표

재질	$\begin{gathered} \mathrm{S} 20 \mathrm{C} \\ \text { 기계구조용탄소강 } \end{gathered}$
$\begin{gathered} \text { 리드 } \\ \text { 정밀도 } \end{gathered}$	$\pm 0.1 \mathrm{~mm} / 300 \mathrm{~mm}$
단피치오차	$\pm 0.02 \mathrm{~mm}$
특징	전조 성형후 외경연마

(unit : mm)							
$\begin{aligned} & \text { 축경 } \\ & (\phi \mathrm{D}) \end{aligned}$	형번	리드	$\begin{gathered} \text { 리드각 } \\ \theta^{\circ} \end{gathered}$	$\begin{aligned} & \text { 곡경 } \\ & 申 \mathrm{~d} \end{aligned}$	유효경 申d 1	단위중량 (kg/m)	$\underset{\text { L }}{\text { 표준길이 }}$
8	TMR8	1.5	3.77	6	7.25	0.3	500
10	TMR10	2	4.05	7.5	9	0.5	1000
	TMR10L						
12	TMR12	2	3.31	9.5	11	0.8	
	TMR12L						
14	TMR14	3	4.37	10.5	12.5	1	
	TMR14L						
16	TMR16	3	3.77	12.5	14.5	1.3	$\begin{aligned} & 1000 \\ & 1500 \end{aligned}$
	TMR16L						
18	TMR18	4	4.55	13.5	16	1.6	
	TMR18L						
20	TMR20	4	4.05	15.5	18	2	$\begin{aligned} & 1000 \\ & 1500 \\ & 2000 \end{aligned}$
	TMR20L						
22	TMR22	5	4.67	16.5	19.5	2.3	
	TMR22L						
25	TMR25	5	4.05	19.5	22.5	3.1	
	TMR25L						
28	TMR28	5	3.57	22.5	25.5	4	
	TMR28L						
32	TMR32	6	3.77	25.5	29	5.2	1000
	TMR32L						
36	TMR36	6	3.31	29.5	33	6.7	$\begin{aligned} & 1500 \\ & 2000 \\ & 3000 \end{aligned}$
	TMR36L						
40	TMR40	6	2.96	33.5	37	8.4	
	TMR40L						

L1

사양표

재질	S 45 C
리드 정밀도	$\pm 0.1 \mathrm{~mm} / 300 \mathrm{~mm}$
단피치오차	$\pm 0.02 \mathrm{~mm}$
특징	마하절삭가공으로 송산

축경 ($\varnothing \mathrm{D}$)	형번	리드	$\begin{gathered} \text { 리드각 } \\ \theta^{\circ} \end{gathered}$	$\begin{aligned} & \text { 곡경 } \\ & \phi \mathrm{d} \end{aligned}$	유효경 $\phi d 1$	단위중량 (kg/m)	$\begin{gathered} \text { 표준길이 } \\ \text { L } \end{gathered}$	$\begin{gathered} \text { 비나사 } \\ \text { L1 } \end{gathered}$
45	TML45	8	3.55	36.5	41	10.4	$\begin{aligned} & 1500 \\ & 2000 \\ & 3000 \end{aligned}$	220
50	TML50	8	3.17	41.5	46	13		
55	TML55	8	2.86	46.5	51	16	비표준품	비표준
60	TML60	8	2.6	51.5	56	19.3		
65	TML65	10	3.04	54.5	60	22.2		
70	TML70	10	2.8	59.5	65	26		
75	TML75	10	2.6	64.5	70	30.2		
80	TML80	10	2.43	69.5	75	34.7		
85	TML85	12	2.77	72.5	79	38.5		
90	TML90	12	2.6	77.5	84	43.5		
95	TML95	12	2.46	82.5	89	48.8		
100	TML100	12	2.33	87.5	94	54.5		

사양표

TMSR 오른나사형상

재질	SUS303
리드 정밀도	$\pm 0.1 \mathrm{~mm} / 300 \mathrm{~mm}$
단피치오차	$\pm 0.02 \mathrm{~mm}$
특징	스텐레스 재질 내약품, 내식성 우수

(unit:mm)

축경 (\varnothing D)	형번	리드	$\begin{gathered} \text { 리드각 } \\ \theta^{\circ} \end{gathered}$	$\begin{aligned} & \text { 곡경 } \\ & \phi \mathrm{d} \end{aligned}$	유효경 ϕ d1	단위중량 (kg/m)	표준길이 L
8	TMSR8	1.5	3.77	6	7.25	0.3	500
10	TMSR10	2	4.05	7.5	9	0.5	
12	TMSR12	2	3.31	9.5	11	0.8	1000
14	TMSR14	3	4.37	10.5	12.5	1	
16	TMSR16	3	3.77	12.5	14.5	1.3	1000
18	TMSR18	4	4.55	13.5	16	1.6	1500
20	TMSR20	4	4.05	15.5	18	2	$\begin{aligned} & 1000 \\ & 2000 \end{aligned}$

플랜지너트

너트 재질 : BC6 (청동주물)

FTM

TTM

$\mathrm{L} 1 \pm 0.2$
$L \pm 0.3$
(unit: mm)

축경 ($\varnothing \mathrm{D}$)	형번		리드	$\phi \mathrm{D}$	¢D1	L	L1	K	PCD	ϕ_{X}	$\begin{gathered} \text { 내경 } \\ \phi \mathrm{d} \end{gathered}$	$\begin{gathered} \text { 유효경 } \\ 申 \mathrm{~d} 1 \end{gathered}$	$\begin{aligned} & \text { 곡경 } \\ & \phi \mathrm{d} 2 \end{aligned}$	$\begin{aligned} & \text { Fo } \\ & \text { (kgf) } \end{aligned}$	중량 (kg)
8	TTM8	R,L	1.5	15	30	20	4	-	22	3.3	7	7.25	8.5	150	0.4
10	TTM10	$\begin{aligned} & R \\ & \mathrm{~L} \end{aligned}$	2	20	36	24	5	-	26	4.3	8.5	9	10.5	260	0.8
	FTM10							26							0.7
12	TTM12	RL	2	22	44	30	5	-	31	5.4	10.5	11	12.5	400	0.1
	FTM12							31							0.1
14	TTM14	R	3	22	44	30	5	-	31	5.4	11.5	125	14.5	500	0.1
	FTM14							31							0.1
16	TTM16	$\begin{aligned} & \text { R } \\ & \mathrm{L} \end{aligned}$	3	28	51	35	6	-	38	6.6	13.5	14.5	16.5	640	0.2
	FTM16							38							0.2
18	TTM18	$\begin{aligned} & \text { R } \\ & \mathrm{L} \end{aligned}$	4	32	56	40	6	-	42	6.6	14.5	16	18.5	890	0.3
	FTM18							42							0.2
20	TTM20	RL	4	32	56	40	6	-	42	6.6	16.5	18	20.5	1000	0.3
	FTM20							42							0.2
22	TTM22	$\begin{gathered} \text { R } \\ \mathrm{L} \end{gathered}$	5	36	61	50	7	-	47	6.6	18	19.5	22.5	1260	0.4
	FTM22							47							0.4
25	TTM25	RL	5	36	61	50	7	-	47	6.6	21	22.5	25.5	1440	0.4
	FTM25							47							0.3
28	TTM28	$\begin{gathered} \mathrm{R} \\ \mathrm{~L} \end{gathered}$	5	44	76	56	8	-	58	9	24	25.5	28.5	1800	0.7
	FTM28							58							0.6
32	TTM32	R	6	44	76	56	8	-	58	9	27	29	32.5	2090	0.6
	FTM32							58							0.5
36	TTM36	$\begin{gathered} R \\ L \end{gathered}$	6	52	84	60	8	-	66	9	31	33	36.5	2630	0.9
	FTM36							66							0.8
40	TTM40	$\begin{aligned} & R \\ & \mathrm{~L} \end{aligned}$	6	58	98	70	10	-	76	11	35	37	40.5	3240	1.3
	FTM40							76							1.2
45	TTM45	$\begin{gathered} R \\ L \end{gathered}$	8	64	104	75	10	-	80	11	38	41	45.5	4110	1.6
	FTM45							80							1.5
50	TTM50	R	8	68	109	80	10	-	85	11	43	46	50.5	5110	1.8
	FTM50	L						85	85	1	43	46	50.5	5110	1.6

[^0]너트 재질 : BC 6 (청동주물)

(unit: mm)

$\begin{aligned} & \text { 축경 } \\ & \text { (} \varnothing \mathrm{D}) \end{aligned}$	형번		리드	$\phi \mathrm{D}$	¢D1	L	L1	W	PCD	$\phi \times$	내경 ϕ d	$\begin{aligned} & \text { 유효격 } \\ & \phi \mathrm{d} 1 \end{aligned}$	$\begin{aligned} & \text { 곡경 } \\ & \phi \mathrm{d} 2 \end{aligned}$	Fo (kgf)	중량 (kg)
10	ATM10	R L	2	20	36	24	5	22	26	4.3	8.5	9	10.5	260	0.1
12	ATM12	$\begin{aligned} & \mathrm{R} \\ & \mathrm{~L} \end{aligned}$	2	22	44	30	5	26	31	5.4	10.5	11	12.5	400	0.1
14	ATM14	$\begin{aligned} & \mathrm{R} \\ & \mathrm{~L} \end{aligned}$	3	22	44	30	5	26	31	5.4	11.5	125	14.5	500	0.1
16	ATM16	$\begin{aligned} & \mathrm{R} \\ & \mathrm{~L} \end{aligned}$	3	28	51	35	6	32	38	6.6	13.5	14.5	16.5	640	0.2
18	ATM18	$\begin{aligned} & \mathrm{R} \\ & \mathrm{~L} \end{aligned}$	4	32	56	40	6	34	42	6.6	14.5	16	18.5	890	0.3
20	ATM20	$\begin{aligned} & \mathrm{R} \\ & \mathrm{~L} \end{aligned}$	4	32	56	40	6	34	42	6.6	16.5	18	20.5	1000	0.2
22	ATM22	$\begin{aligned} & \mathrm{R} \\ & \mathrm{~L} \end{aligned}$	5	36	61	50	7	38	47	6.6	18	19.5	22.5	1260	0.4
25	ATM25	$\begin{aligned} & R \\ & \hline \end{aligned}$	5	36	61	50	7	38	47	6.6	21	22.5	25.5	1440	0.3
28	ATM28	$\begin{aligned} & \mathrm{R} \\ & \mathrm{~L} \end{aligned}$	5	44	76	56	8	47	58	9	24	25.5	28.5	1800	0.6
32	ATM32	$\begin{aligned} & \mathrm{R} \\ & \mathrm{~L} \end{aligned}$	6	44	76	56	8	47	58	9	27	29	32.5	2090	0.5
36	ATM36	$\begin{aligned} & \mathrm{R} \\ & \mathrm{~L} \end{aligned}$	6	52	84	60	8	54	66	9	31	33	36.5	2630	0.8
40	ATM40	$\begin{aligned} & \mathrm{R} \\ & \mathrm{~L} \end{aligned}$	6	58	98	70	10	60	76	11	35	37	40.5	3240	1.1
45	ATM45	$\begin{aligned} & \mathrm{R} \\ & \mathrm{~L} \end{aligned}$	8	64	104	75	10	66	80	11	38	41	45.5	4110	1.5
50	ATM50	$\begin{aligned} & \mathrm{R} \\ & \mathrm{~L} \end{aligned}$	8	68	109	80	10	70	85	11	43	46	50.5	5110	1.6

Fo: 동적허용추력 (kgf)

너트 재질 : BC 6 (청동주물)

(unit: mm)

축경 ()	형번		리드	W	H	F	L	B	C	S	ϕ_{X}	내경 $\phi \mathrm{d}$	$\begin{gathered} \text { 유효경 } \\ \phi \mathrm{d} 1 \end{gathered}$	$\begin{aligned} & \text { 곡격 } \\ & \phi \mathrm{d} 2 \end{aligned}$	Fo (kgf)	중량 (kg)
10	BTM10	R L	2	30	20	10	24	20	16	M4	3.3	8.5	9	10.5	260	0.1
12	BTM12	R	2	38	22	11	30	26	20	M5	4.3	10.5	11	12.5	400	0.15
14	BTM14	$\begin{gathered} \mathrm{R} \\ \mathrm{~L} \end{gathered}$	3	38	22	11	30	26	20	M5	4.3	11.5	12.5	14.5	500	0.14
16	BTM16	R	3	44	28	14	35	32	24	M5	4.3	13.5	14.5	16.5	640	0.3
18	BTM18	$\begin{aligned} & \mathrm{R} \\ & \mathrm{~L} \end{aligned}$	4	48	32	16	40	36	28	M6	5.1	14.5	16	18.5	890	0.4
20	BTM20	$\begin{aligned} & \mathrm{R} \\ & \mathrm{~L} \end{aligned}$	4	48	32	16	40	36	28	M6	5.1	16.5	18	20.5	1000	0.4
22	BTM22	R	5	62	38	20	50	46	34	M8	6.8	18	19.5	22.5	1260	0.7
25	BTM25	$\begin{aligned} & \mathrm{R} \\ & \mathrm{~L} \end{aligned}$	5	62	38	20	50	46	34	M8	6.8	21	22.5	25.5	1440	0.6
28	BTM28	$\begin{aligned} & \mathrm{R} \\ & \mathrm{~L} \end{aligned}$	5	68	47	25	56	52	40	M8	6.8	24	25.5	28.5	1800	1
32	BTM32	$\begin{aligned} & \mathrm{R} \\ & \mathrm{~L} \end{aligned}$	6	68	47	25	56	52	40	M8	6.8	27	29	32.5	2090	1

Fo : 동적허용추력 (kgf)

너트 재질 : BC6 (청동주물)

(unit: mm)

축경 ($\varnothing \mathrm{D}$)	형번		리드	ϕD	L	$\begin{aligned} & \text { 내경 } \\ & \phi \mathrm{d} \end{aligned}$	유효경 $\phi \mathrm{d} 1$	$\begin{aligned} & \text { 곡경 } \\ & \phi \mathrm{d} 2 \end{aligned}$	$\begin{gathered} \text { Fo } \\ \text { (kgf) } \end{gathered}$	중량 (kg)
10	STM10	R L	2	20	20	8.5	9	10.5	220	0.05
12	STM12	$\begin{aligned} & \mathrm{R} \\ & \mathrm{~L} \end{aligned}$	2	22	22	10.5	11	12.5	290	0.06
14	STM14	$\begin{aligned} & \mathrm{R} \\ & \mathrm{~L} \end{aligned}$	3	22	22	11.5	125	14.5	350	0.05
16	STM16	$\begin{aligned} & R \\ & \hline \end{aligned}$	3	28	26	13.5	14.5	16.5	460	1
18	STM18	$\begin{aligned} & \mathrm{R} \\ & \mathrm{~L} \end{aligned}$	4	32	31	14.5	16	18.5	630	0.2
20	STM20	R	4	32	31	16.5	18	20.5	700	0.2
22	STM22	$\begin{aligned} & \mathrm{R} \\ & \mathrm{~L} \end{aligned}$	5	36	40	18	19.5	22.5	1000	0.3
25	STM25	R	5	36	40	21	22.5	25.5	1160	0.2
28	STM28	$\begin{aligned} & \mathrm{R} \\ & \mathrm{~L} \end{aligned}$	5	44	45	24	25.5	28.5	1470	0.4
32	STM32	$\begin{aligned} & \mathrm{R} \\ & \mathrm{~L} \end{aligned}$	6	44	45	27	29	32.5	1620	0.3
36	STM36	$\begin{aligned} & \mathrm{R} \\ & \mathrm{~L} \end{aligned}$	6	52	49	31	33	36.5	2100	0.5
40	STM40	$\begin{aligned} & \mathrm{R} \\ & \mathrm{~L} \end{aligned}$	6	58	57	35	37	40.5	2650	0.8
45	STM45	$\begin{aligned} & \mathrm{R} \\ & \mathrm{~L} \end{aligned}$	8	64	62	38	41	45.5	3190	1
50	STM50	$\begin{aligned} & \mathrm{R} \\ & \mathrm{~L} \end{aligned}$	8	68	67	43	46	50.5	4090	1.1

Fo : 동적허용추력 (kgf)

준표준 대형너트

TTM 대형

너트 재질 : BC6 (청동주물)

$\mathrm{L} 1 \pm 0.2$
$\mathrm{L} \pm 0.3$
(unit:mm)

$\begin{aligned} & \text { 축경 } \\ & \text { (} \varnothing \mathrm{D}) \end{aligned}$	형번		리드	$\phi \mathrm{D}$	¢D1	L	L1	PCD	ϕ_{X}	$\begin{gathered} \text { 내경 } \\ \phi \mathrm{d} \end{gathered}$	$\begin{gathered} \text { 유효격 } \\ \phi \mathrm{d} 1 \end{gathered}$	$\begin{aligned} & \text { 곡경 } \\ & \phi \mathrm{d} 2 \end{aligned}$	중량 (kg)
55	TTM55	R L	8	76	116	96	15	94	11	48	51	55.5	2.9
60	TTM60	$\begin{aligned} & \mathrm{R} \\ & \mathrm{~L} \end{aligned}$	8	82	122	100	15	100	11	53	56	60.5	3.3
65	TTM65	$\begin{aligned} & \mathrm{R} \\ & \mathrm{~L} \end{aligned}$	10	90	136	110	18	111	14	56	60	65.5	4.7
70	TTM70	$\begin{aligned} & \mathrm{R} \\ & \mathrm{~L} \end{aligned}$	10	98	144	115	18	119	14	61	65	70.5	5.7
75	TTM75	$\begin{aligned} & \mathrm{R} \\ & \mathrm{~L} \end{aligned}$	10	102	156	120	20	127	16	66	70	75.5	6.5
80	TTM80	$\begin{aligned} & \mathrm{R} \\ & \mathrm{~L} \end{aligned}$	10	108	162	125	20	133	16	71	75	80.5	7.2
85	TTM85	$\begin{aligned} & \mathrm{R} \\ & \mathrm{~L} \end{aligned}$	12	118	180	132	23	148	18	74	79	85.5	9.9
90	TTM90	$\begin{aligned} & \mathrm{R} \\ & \mathrm{~L} \end{aligned}$	12	124	185	138	23	154	18	79	84	90.5	11
95	TTM95	$\begin{aligned} & \mathrm{R} \end{aligned}$	12	128	199	144	25	162	20	84	89	95.5	12.5
100	TTM100	$\begin{aligned} & \mathrm{R} \\ & \mathrm{~L} \end{aligned}$	12	134	206	150	25	170	20	89	94	100.5	13.8

사양표

(unit: mm)

축경 $(\varnothing \mathrm{D})$	형번	$\begin{gathered} \text { 리드 } \\ \text { P } \end{gathered}$	$\begin{gathered} \text { 리드각 } \\ \theta^{\circ} \end{gathered}$	$\begin{aligned} & \text { 곡경 } \\ & \varnothing \mathrm{d} \end{aligned}$	$\begin{gathered} \text { 유효경 } \\ 申 \mathrm{~d} 1 \end{gathered}$	단위중량 (kg/m)	전체길이 L	나사부 L1	$\begin{gathered} \text { 비나사부 } \\ \text { L2 } \end{gathered}$
8	TMC8	1.5	3.77	6	7.25	0.3	250	120	10
10	TMC10	2	4.05	7.5	9	0.5	250	120	10
							530	250	30
12	TMC12	2	3.31	9.5	11	0.8	530	250	30
							730	350	30
14	TMC14	3	4.37	10.5	12.5	1	530	250	30
							730	350	30
16	TMC16	3	3.77	12.5	14.5	1.3	530	250	30
							730	350	30
							930	450	30
							1130	550	30
18	TMC18	4	4.55	13.5	16	1.6	530	250	30
							1130	550	30
20	TMC20	4	4.05	15.5	18	2	530	250	30
							730	350	30
							930	450	30
							1130	550	30
22	TMC22	5	4.67	16.5	19.5	2.3	530	250	30
							1130	550	30
25	TMC25	5	4.05	19.5	22.5	3.1	530	250	30
							730	350	30
							930	450	30
							1130	550	30
28	TMC28	5	3.57	22.5	25.5	4	930	450	30
							1130	550	30
32	TMC32	6	3.77	25.5	29	5.2	930	450	30
							1130	550	30

센터조정형 C형 너트

너트 재질 : BC 6 (청동주물)

(unit: mm)

축경 ($\phi \mathrm{D}$)	형번		리드	$\phi \mathrm{D}$	¢D1	L	L1	PCD	ϕ_{X}	내경 $\phi \mathrm{d}$	$\begin{aligned} & \text { 유효격 } \\ & \phi \mathrm{d} 1 \end{aligned}$	$\begin{aligned} & \text { 곡경 } \\ & \phi \mathrm{d} 2 \end{aligned}$	$\begin{aligned} & \text { Fo } \\ & \text { (kgf) } \end{aligned}$	중량 (kg)
8	CTM8	R L	1.5	15	30	20	4	22	3.3	7	7.25	8.5	150	0.4
10	CTM10	R	2	20	36	24	5	26	4.3	8.5	9	10.5	260	0.8
12	CTM12	R	2	22	44	30	5	31	5.4	10.5	11	12.5	400	0.1
14	CTM14	$\begin{aligned} & \mathrm{R} \\ & \mathrm{~L} \end{aligned}$	3	22	44	30	5	31	5.4	11.5	125	14.5	500	0.1
16	CTM16	R L	3	28	51	35	6	38	6.6	13.5	14.5	16.5	640	0.2
18	CTM18	R	4	32	56	40	6	42	6.6	14.5	16	18.5	890	0.3
20	CTM20	$\stackrel{R}{\text { R }}$	4	32	56	40	6	42	6.6	16.5	18	20.5	1000	0.3
22	CTM22	$\begin{aligned} & R \\ & \mathrm{~L} \end{aligned}$	5	36	61	50	7	47	6.6	18	19.5	22.5	1260	0.4
25	CTM25	$\begin{aligned} & \mathrm{R} \\ & \mathrm{~L} \end{aligned}$	5	36	61	50	7	47	6.6	21	22.5	25.5	1440	0.4
28	CTM28	$\begin{aligned} & R \\ & \mathrm{~L} \end{aligned}$	5	44	76	56	8	58	9	24	25.5	28.5	1800	0.7
32	CTM32	$\begin{aligned} & \mathrm{R} \\ & \mathrm{~L} \end{aligned}$	6	44	76	56	8	58	9	27	29	32.5	2090	0.6

Fo : 동적허용추력 (kgf)

	사양표	
	재질	$\begin{gathered} \mathrm{S} 20 \mathrm{C} \\ \text { 기계구조용탄소강 } \end{gathered}$
	$\begin{aligned} & \text { 리드 } \\ & \text { 정밀도 } \end{aligned}$	$\pm 0.1 \mathrm{~mm} / 300 \mathrm{~mm}$
	단피치오차	$\pm 0.03 \mathrm{~mm}$
L	특징	대리드 다줄나사
TMH 형상		

축경 (\varnothing D)	형번	리드	$\begin{gathered} \text { 피치 } \\ P \end{gathered}$	나사줄수	리드각 θ°	$\begin{aligned} & \text { 곡경 } \\ & \phi \mathrm{d} \end{aligned}$	$\begin{gathered} \text { 유효경 } \\ 申 \mathrm{~d} 1 \end{gathered}$	단위중량 (kg/m)	표준길이 L
8	TMH0806	6	1.5	4	14.77	6	7.25	0.3	500
10	TMH1016	16	2	8	29.5	7.5	9	0.5	1000
	TMH1025	25	2.5	10	41.75	7	8.75	0.5	
12	TMH1208	8	2	4	13.03	9.5	11	0.8	
	TMH1210	10	2.5	4	16.5	9	10.75	0.8	
	TMH1220	20	2.5	8	30.63	9	10.75	0.8	
	TMH1230	30	3	10	41.75	8.5	10.5	0.8	
16	TMH1612	12	3	4	14.76	12.5	14.5	1.3	$\begin{aligned} & 1000 \\ & 1500 \end{aligned}$
	TMH1624	24	3	8	27.78	12.5	14.5	1.3	
	TMH1640	40	4	10	41.74	11.5	14	1.3	
20	TMH2016	16	4	4	15.8	15.5	18	2	
	TMH2032	32	4	8	29.5	15.5	18	2	$\begin{aligned} & 1500 \\ & 2000 \end{aligned}$
25	TMH2520	20	5	4	15.8	19.5	22.5	3.1	

※ TMH 다줄나사는 오른나사만 있습니다.

일본 TOYO 사 다줄나사의 특징

■ TMH 대리드 나사축은 전조 성형후 외경을 정밀 센타레스 연삭을 하여 진직도가 좋으며, 진원도 가 좋아 가공의 정도를 높일 수 있습니다.
■ 나사축은 S20C 기계 구조용 탄소강을 냉간전조 성형하여 소형 경화된 경면으로 조도가 좋아 내 마모성이 우수합니다.
\square 너트의 재질은 BC 6 으로 다이캐스팅용 아연합금보다 더 비싸며 고급재료입니다.
■ 10줄나사는 체인지 나사(CT:대리드)로 대용하여 사용할 수 있습니다.

너트 재질 : BC 6 (청동주물)

(unit: mm)

축경 (\varnothing D)	형번	리드	ϕD	¢D1	L	L1	PCD	$\phi \times$	내경 $\phi \mathrm{d}$	$\begin{gathered} \text { 유효경 } \\ \phi \mathrm{d} 1 \end{gathered}$	$\begin{aligned} & \text { 곡경 } \\ & \phi \mathrm{d} 2 \end{aligned}$	$\begin{aligned} & \text { Fo } \\ & \text { (kgf) } \end{aligned}$	중량 (kg)
8	TTMH0806	6	15	30	20	4	22	3.3	6.5	7.25	8.5	150	0.05
10	TTMH1016	16	20	36	24	5	26	4.4	8	9	10.5	260	0.1
	TTMH1025	25	20	36	24	5	26	4.4	7.5	8.75	10.5	260	0.1
12	TTMH1208	8	22	44	30	5	31	5.5	10.5	11	12.5	400	0.1
	TTMH1210	10	22	44	30	5	31	5.5	10.25	10.75	12.5	400	0.1
	TTMH1220	20	22	44	30	5	31	5.5	10.25	10.75	12.5	400	0.1
	TTMH1230	30	22	44	30	5	31	5.5	10	10.5	12.5	400	0.1
16	TTMH1612	12	28	51	35	6	38	6.6	13.5	14.5	16.5	640	0.2
	TTMH1624	24	28	51	35	6	38	6.6	13.5	14.5	16.5	640	0.2
	TTMH1640	40	28	51	35	6	38	6.6	13	14.25	16.5	640	0.2
20	TTMH2016	16	32	56	40	6	42	6.6	16.5	18	20.5	1000	0.3
	TTMH2032	32	32	56	40	6	42	6.6	16.5	18	20.5	1000	0.3
25	TTMH2520	20	36	61	50	7	47	6.6	21	22.5	25.5	1440	0.4

Fo: 동적허용추력 (kgf)

사양표

재질	S45C
특징	정동용 삼각사 $\mathbf{~}$

(unit:mm)

축경 ($\varnothing \mathrm{D}$)	형번	리드	피치 P	나사줄수	$\begin{gathered} \text { 곡경 } \\ \phi \mathrm{d} \end{gathered}$	단위중량 (kg/m)	$\begin{gathered} \text { 표준길이 } \\ \text { L } \end{gathered}$
5	SMR5008	0.8	0.8	1	3	0.14	400
	SMR5020	2	1	2	3	0.14	
	SMR5100	10	1	10	3	0.3	
8	SMR8020	2	2	1	5	0.3	
	SMR8100	10	1	10	5.5	0.3	

일본 TOYO사 삼각 전동나사의 특징

$\square \mathrm{SMR}$ 는 작은 직경의 60° 전동용 삼각나사로 동력전달용으로 설계되어 진직도, 이송능력, 정밀도 등이 우수한 제품입니다.

■ 나사축은 S 45 C 기계구조용 탄소강을 냉간전조 성형하여 소형 경화된 경면으로 조도가 좋아 내마 모성이 우수합니다.
■ SMR 나사의 기본 산모양은 JIS B 0205(삼각보통나사)와 JIS B 0207(삼각 세목나사) 를 따릅니다.
■ 축과 너트의 조합시 흔들림치

형번	축방향	축 직각 방향
SMR5008	0.1	0.15
SMR5020	0.1	0.15
SMR5100	0.1	0.15
SMR8020	0.15	0.2
SMR8100	0.1	0.15

너트 재질 : BC 6 (청동주물)

$\mathrm{L} 1 \pm 0.1$
$\mathrm{L} \pm 0.2$
(unit: mm)

축경 ($\varnothing \mathrm{D}$)	형번	리드	$\phi \mathrm{D}$	¢D1	L	L1	W	PCD	ϕ X	$\begin{aligned} & \text { Fo } \\ & \text { (kgf) } \end{aligned}$	중량 (g)
5	ASM5008	0.8	10	24	14	3	10	17	3.3	108	11
	TSM5008						-				
	ASM5020	2	10	24	14	3	10	17	3.3	106	11
	TSM5020						-				
	ASM5100	10	10	24	14	3	10	17	3.3	106	11
	TSM5100						-				
8	ASM8020	2	15	30	20	4	15	22	3.3	235	38
	TSM8020						-				
	ASM8100	10	15	30	20	4	15	22	3.3	253	38
	TSM8100						-				

Fo : 동적허용추력 (kgf)
너트 재질 : BC 6 (청동주물)
C0.3

SSM
(unit:mm)

축격 $(\phi \mathrm{D})$	형번	리드	$\phi \mathrm{D}$	L	Fo (kgf)	중량 (g)
5	SSM5008	0.8	10	12	93	6
	SSM5020	2	10	12	91	6
	SSM5100	10	10	12	91	6
8	SSM8020	2	15	20	235	20
	SSM8100	10	15	20	253	20

Fo: 동적허용추력 (kgf)

[^0]: Fo : 동적허용추력 (kgf)

